Standard Specification for Lead-Coated and Lead-Alloy-Coated Soft Copper Wire for Electrical Purposes¹

This standard is issued under the fixed designation B189; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

1. Scope

- 1.1 This specification covers lead-coated and lead-alloycoated, round, soft or annealed copper wire for electrical purposes.
- 1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. The SI values for density and resistivity are to be regarded as the standard.
- 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. The hazard statement applies only to Section 6 of this specification.

2. Referenced Documents

- 2.1 The following documents of the issue in effect at the time of reference form a part of these methods to the extent referenced herein:
 - 2.2 ASTM Standards:²
 - B49 Specification for Copper Rod Drawing Stock for Electrical Purposes
 - B193 Test Method for Resistivity of Electrical Conductor
 - B258 Specification for Nominal Diameters and Cross-Sectional Areas of AWG Sizes of Solid Round Wires Used as Electrical Conductors
 - 2.3 NIST:

NBS Handbook 100 Copper Wire Tables³

3. Ordering Information

- 3.1 Orders for material under this specification shall include the following information:
 - 3.1.1 Quantity of each size and type of coating;
 - 3.1.2 Wire size: diameter in inches (see 5.3 and Table 1);
 - 3.1.3 Type of coating (see Section 1);
 - 3.1.4 Type of copper, if special (see 4.2);
 - 3.1.5 Package size (see 8.1);
 - 3.1.6 Special package marking, if required; and
 - 3.1.7 Place of inspection (see 6.1).

4. Material

4.1 Coating Material—The coating material shall be commercially pure lead or a lead alloy. The lead alloy shall conform to the following requirements as to chemical composition as determined by analysis of samples from the coating bath:

Lead, min, %	25
Tin, max, %	75 ^A
Antimony, max, %	6

^A It is permissible to use alloying constituents other than those specified above to replace a portion of the tin.

- 4.2 *Copper-Base Metal*—The base metal shall be copper of such quality and purity that the finished product shall have properties and characteristics prescribed in this specification.
- 4.2.1 Copper of special qualities, forms, or types, as may be agreed upon between the manufacturer and the purchaser, and which will conform to the requirements prescribed in this specification may also be used.

Note 1—Specification B49 defines copper suitable for use.

5. General Requirements (See Section 9)

5.1 Tensile Strength and Elongation (Explanatory Note 1)—The coated wire shall conform to the requirements for elongation prescribed in Table 1. No requirements for tensile strength are specified. For wire whose nominal diameter is more than 0.001 in. (1 mil) greater than a size listed in Table 1, but less than that of the next larger size, the requirements of the next larger size shall apply.

¹ This specification is under the jurisdiction of ASTM Committee B01 on Electrical Conductors and is the direct responsibility of Subcommittee B01.04 on Conductors of Copper and Copper Alloys.

Current edition approved April 1, 2015. Published April 2015. Originally approved in 1944. Last previous edition approved in 2010 as B189 - 05 (2010). DOI: 10.1520/B0189-05R15.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM Standards volume information, refer to the standard's Document Summary page on the ASTM website.

Available from National Institute of Standards and Technology (NIST), 100 Bureau Dr., Stop 1070, Gaithersburg, MD 20899-1070, http://www.nist.gov.

TABLE 1 Tensile Requirements

	IABLE 1 Tensile	Requirements	
Diameter, in.	Area	at 20°C	Elongation in 10
Diameter, in.	cmils	in. ²	in., min, %
0.4600	211 600	0.1662	30
0.4096	167 800	0.1318	30
0.3648	133 100	0.1045	30
0.3249	105 600	0.08291	30
0.2893	83 690	0.06573	25
0.2576	66 360	0.05212	25
0.2294	52 620	0.04133	25
0.2043	41 740	0.03278	25
0.1819	33 090	0.02599	25
0.1620	26 240	0.02061	25
0.1443	20 820	0.01635	25
0.1285	16 510	0.01297	25
0.1144	13 090	0.01028	25
0.1019	10 380	0.008155	20
0.0907	8 230	0.00646	20
0.0808	6 530	0.00513	20
0.0720	5 180	0.00407	20
0.0641	4 110	0.00323	20
0.0571	3 260	0.00256	20
0.0508	2 580	0.00203	20
0.0453	2 050	0.00161	20
0.0403	1 620	0.00128	20
0.0359	1 290	0.00101	20
0.0320	1 020	0.000804	20
0.0285	812	0.000638	20
0.0253	640	0.000503	20
0.0226	511	0.000401	20
0.0201	404	0.000317	15
0.0179	320	0.000252	15
0.0159	253	0.000199	15
0.0142	202	0.000158	15
0.0126	159	0.000125	15
0.0113	128	0.000100	15
0.0100	100	0.0000785	10
0.0089	79.2	0.0000622	10
0.0080	64.0	0.0000503	10
0.0071	50.4	0.0000396	10
0.0063	39.7	0.0000312	10
0.0056	31.4	0.0000246	10
0.0050	25.0	0.0000196	10
0.0045	20.2	0.0000159	10
0.0040	16.0	0.0000126	10
0.0035	12.2	0.00000962	10
0.0031	9.61	0.00000755	10

5.2 Resistivity (Explanatory Note 2)—The electrical resistivity of the coated wire at a temperature of 20°C shall not exceed the values prescribed in Table 2.

TABLE 2 Electrical Resistivity Requirements

Nominal Diameter, in.	Resistivity at 20°C, Ω-lb/mile²
0.460 to 0.290, incl	896.15
Under 0.290 to 0.103, incl	900.77
Under 0.103 to 0.0201, incl	910.15
Under 0.0201 to 0.0111, incl	929.52
Under 0.0111 to 0.0030, incl	939.51

- 5.3 Dimensions and Permissible Variations (Explanatory Note 1)—The wire sizes shall be expressed as the diameter of the wire in decimal fractions of an inch to the nearest 0.0001 in. (0.1 mil). The coated wire shall not vary from the specified diameter by more than the amounts prescribed in Table 3.
- 5.4 Continuity of Coating—The lead or lead-alloy coating shall be continuous. The continuity of coating on the wire shall be determined on representative samples taken before stranding or insulating. The continuity of coating shall be determined by the ammonium persulfate test in accordance with 6.4 or by the sodium polysulfide-hydrochloric acid test in accordance with 6.5. In case the results obtained in the sodium polysulfide-hydrochloric acid test are not conclusive, the ammonium persulfate test shall be employed and the results obtained by this latter test shall be final.
- 5.5 *Joints*—Necessary joints in the completed wire and in the wire and rods prior to final drawing shall be made in accordance with the best commercial practice.
- 5.6 *Finish*—The coating shall consist of a smooth continuous layer, firmly adherent to the surface of the copper. The wire shall be free of all imperfections not consistent with the best commercial practice.

6. Test Methods

- 6.1 Tensile Strength and Elongation (Explanatory Note 3)—No test for tensile strength shall be required.
- 6.1.1 The elongation of wire whose nominal diameter is larger than 0.0808 in. (2.052 mm) in diameter shall be determined as the permanent increase in length, expressed in percent of the original length, due to the breaking of the wire in tension, measured between gage marks placed originally 10 in. (254 mm) apart upon the test specimen. The elongation of the wire whose nominal diameter is 0.0808 in. (2.052 mm) and under may be determined as just described or by measurements made between the jaws of the testing machine. When the latter method is used, the zero length shall be the distance between the jaws at the start of the tension test and be as near 10 in. (254 mm) as practical, and the final length shall be the distance between the jaws at the time of rupture. The fracture shall be between gage marks in the case of specimens so marked or between the jaws of the testing machine and not closer than 1 in. (25.4 mm) to either gage mark or either jaw.
- 6.2 Resistivity (Explanatory Note 2)—The electrical resistivity of the material shall be determined in accordance with Test Method B193. The purchaser may accept certification that the wire was drawn from rod stock meeting the international standard for annealed copper in lieu of resistivity tests on the finished wire.

TABLE 3 Permissible Variations in Diameter

Permissible Variations in Diameter		
plus	minus	
0.0003 in. (0.3 mil)	0.0001 in. (0.1 mil)	
3 % ^A	1 % ^A	
	plus 0.0003 in. (0.3 mil)	

A Expressed to the nearest 0 0001 in (0.1 mil)